Issue	:CE-E-AFJ-07
Date of Issue	:23 May ,2002
Classification	New , Changed , Revised

ENGINEERING DRAFT

Product Description	:Aluminum Electrolytic Capacitor
Product Part Number	:Radial lead type (JIS:04 type) FJ series
Country of Origin	:Malaysia
Marking of the Origin	:Printed on the packaging label(The name of Country of English)
Classification of Spec.	:Product specification
Recommended Applications	:MOTHER BOARD FOR PERSONAL COMPUTER
	For other application, contact our person signed below.
Term of Validity	22 May ,2003 from the date of issue

CUSTOMER USE ONLY	Receipt Record #:		
This was certainly received by us.	Date of Receipt :		
One copy is being returned to the manufacturer.	Received by:		

•No Ozone Depleting Chemicals(ODC's), controlled under the Montreal Protocol Agreement, are used in producing this product.

•This product does not contain PBBOs or PBBs.

•All the materials that are used for this product are registered as "Known Chemicals" in the Japanese act "Law Concerning the Examination and Regulation of Manufacture, etc.of Chemical Substances".

•For the products, which are controlled items subject to the Foreign Exchange and Foreign. Trade Control Law, the export permission according to the Law is necessary.

Matsushita Electronic Devices (M) Sdn.Bhd. No.1 Jalan Pelaga 16/13,40000 Shah Alam,Selangor, Danul Ehsan, MALAYSIA. TEL 60-3-5891-2888

Prepared by : Customer Technology Team								
	Product Technology Group							
TEL (0)	TEL (0774)33-3209(Direct)							
FAX (0)	//4)32-3189							
Approval	Approval Check Check Design							
K.Watanabe	H.Yamamoto	S.Nishino	M.Ioka					

No.

Electrolytic Capacitor Engineerin	CE-E-AFJ-07	
A type FJ series	Page No. Contents	
<u>Contents</u>		
Scope		
Parts Number		
Can Size	P.1 ~ P.3	
Standard Rating		
Dimensions and Appearance		
Constructions P	2.4	
Performance Characteristics P	P.5 ~ P.8	
Marking P	9.9	
Others Specifications P	2.9	
Parts Lists P	P.10 ~ P.11	
Dimensions P (Snap−in lead formed type)	2.12	
Taping Shape and Dimensions P	P.13 ~ P.14	
Taping Specifications P	P.15 ~ P.18	
Notices in using P Aluminum Electrolytic Capacitor	P.19 ~ P.22	
Kemarks		
Matsushita Electronic Components C	Co.,Ltd. LCR Device Company	

Capacitor Business Unit

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07					
A type FJ series	1					
I <u>. Scope</u> Fixed capacitors for use in electronic equipment, Aluminum electrolytic capacitors with non-solid electrolyte.						
<u>2. Parts Number</u>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
2-1 Aluminum Electrolytic Capacitor Type : Radial lead type (JIS : 04 type)						
2−2 FJ series						
2-3 Rated Voltage Code						
Voltage Code 0J 1A 1C 1E 1V 1H Rated Voktage (V.DC) 6.3 10 16 25 35 50						
The first 2 figures are actual values and the third denotes the number of zeros. "R" denotes the decimal point and all figures are the actual number with "R". For example, 1uF is expressed as 1R0 in this case. ex. $0.1 \mu F \rightarrow R10$, $10 \mu F \rightarrow 100$, $1000 \mu F \rightarrow 2\pi F$. Suffix Code for Appearance	- 102					
Blank Standard Long Lead						
E Snap-in lead						
B Lead taping						
Refer to page 12 for snap-in lead, page 13 \sim 14 for lead taping dimensions, And page 15 \sim 18 for lead taping specifications.						
Demailer						
nemarks						
Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit						
Design, Specifications are subject to change without notice. Contact your nearest Panasonic sales office for the latest specifications prior to purchase about safety comes up with this product, please contact us immediately for engineering assistance without fail. Specifications are typical and may r	and/or use. Whenever any doubt not apply to all applications.					

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07

A type FJ series

Capacitance and Can Size Table

					[<i>µ</i> F] at 1	20Hz 20°C
V.DC Can Size(ϕ D×L)	6.3	10	16	25	35	50
8X11.5	560	470	330	220	150	100
	820 U	680 U	470 U	330 U	220 U	120 U
	1000 U					
8X15	1200 Y		680 Y			
8X20	1500 L	1000 L	680 L	470 L	330 L	220 L
	1800 Y	1500 Y	1000 Y	680 Y	390 Y	270 Y
	2200 Y					
10X12.5	1000	680	470	330	220	150
	1500 U	1000 U	680 U	470 U	330 U	180 U
10X16	1500	1000	680	470	330	220
	1800 U	1500 U	1000 U	680 U	390 U	270 U
	2200 U					
10X20	2200	1500	1000	680	470	270
	2700 U	2200 U	1500 U	1000 U	560 U	330 U
	3300 U					
10X25	3300 Y		1800 Y			
12.5X20	3300					
	4700 U					

* L, S = the last letter of part numbers.

Examples : EEUFJ0J102U··· ϕ 8×11.5 EEUFJ0J102 $\cdots \phi$ 10 × 12.5 EEUFJ0J222U··· ϕ 10 × 16

Remarks

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07
A type FJ series	3

3. Standard Ratings

No.	Item	Ratings							
1	Category Temperature Range		-25 ∼ +105°C						
2	Rated Voltage Range		6.3 ~ 50 V.DC						
3	Capacitance Range	100 ~ 4700 μ F							
		(120Hz 20°C)							
4	Capacitance Tolerance	± 20% (120Hz 20°C)							
5	Surge Voltage	R.V.	6.3	10	16	25	35	50	
	(V.DC)	S.V. 8 13 20 32 44 63							
6	Rated Ripple Current	Page 10 ~ Page 11,Table3							
7	Impedance	Page 10 ~ Page 11,Table3							

4. Dimensions and Appearance

Body Color (Black) , Marking (Gold) Standard Long Lead (Suffix : Blank)

5-2 Construction Parts

	Parts	Materials		Parts	Materials
1	Lead Wire	Solid tinned copper weld	5	Separator	Manila hemp
		steel wire			
2	Vinyl Sleeve	Thermoplastic Resin	6	Anode Foil	High purity
					Aluminum foil
3	Aluminum Can	Aluminum	7	Cathode Foil	Aluminum foil
4	Sealing Rubber	Synthetic rubber	8	Electrolyte	_

Remarks

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

CE-E-AFJ-07

A type FJ series

6. Performance Characteristics

No	Item	Performance Characteristics		Test				
1	Leakage Current	≦ I = 0. 01CV	Serie	s Resistor : 1000 \pm 10 Ω				
	0		Appli	ed Voltage : Rated voltage				
		I : Leakage current C : Capacitance	Meas	uring : After 2 minutes				
		V : Rated voltage						
2	Capacitance	Within the specified capacitance	Meas	uring Frequency : 120 Hz±20%	6			
		tolerance.	Meas	uring Circuit : Equivalent se	eries circui			
			Meas	uring Voltage : +1. 5 ~ 2 V.	. DC			
				(≦0.5V for A	NC.)			
3	Tangent of Loss	Less than the table 1 value of page 9.	Meas	uring Frequency : 120 Hz±20%	6			
	Angle		Meas	uring Circuit : Equivalent se	eries circui			
	(tanδ)	Added 0. 02 per 1000 μ F for items with	Meas	uring Voltage : +1. 5 ~ 2 V.	. DC			
		over 1000 μ F.		(≦0.5V for A	NC.)			
4	Impedance	20°C Less than the initial limit.	Meas	uring Frequency : 100 kHz				
		-10°C(See page 10 ~ 11)	Meas	uring Temperature : $20\pm2^{\circ}C$,-10	±2°C			
			Meas	uring Point : Impedance shall be	measured			
			at a p	ooint (2mm max. from the surface o	of a			
			sealir	ng rubber) of the lead wire.				
5	Characteristics at	Step 2						
	High and Low	Impedance Ratio :						
	Temperature	Ratio for the value in step 1 shall be	Step	Test Temperature	Time			
		less than the value from table 2 in	1	20± 2°C				
		page 9.	2	-25± 3°C	*			
		Step 4	3	20± 2°C	15 minutes			
		Leakage Current :	4	105± 2°C	2 hours			
		\leq 800% of the value of item 6. 1.	5	20± 2°C	*			
		Capacitance Change :	Impe	dance should be measured at the fr	requency			
		Within $\pm 25\%$ of the value in step 1	of 12	0 Hz土10%.				
		Tangent of Loss Angle (tan δ):						
		\leq the value of item 6. 3.						
			* C	apacitors should be stored at each				
			te	mperature until measured impedan	ce or			
	-		Cá	apacitance is stabilized.				
6	Surge	Leakage Current :	Test	Temperature : 15 ~ 35 °C				
		\leq the value of item 6.1.		_ 1	00 ± 50			
		Capacitance Change :	Serie	Series Protective Resistance : $R = \frac{100 - 100}{C}$				
		Within $\pm 15\%$ of the initially						
		measured value.						
		Tangent of Loss Angle (tan δ):	ſR	= Series protective resistance (k Ω	ן (י			
		\leq the value of item 6. 3.	lrc	=Capacitance (μ F)	J			
		Appearance :	Test	Voltage : Surge voltage item	3. 5			
		No significant change can be	Appli	ed Voltage : 1000 cycles of 30±	5 sec.			
		observed.		"ON" and 5 min. 30	0 sec. "OFF"			
1								

Remarks

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Electrolytic Capacitor En	ngineering	Draft
---------------------------	------------	-------

A type FJ series

۷o		ltem	Performance Characteristics	lest				
7	Robus	tness of						
	Termir	nations		Diameter [mm] Pull Strength				
		Tensile		φ0.6 10 N				
				Applied above steady pull axially for a 10 ± 1				
			There is no damage or breakage after	seconds.				
		Bending	test.					
		0		Diameter [mm] Static Load				
				ϕ or ϕ or ϕ or ϕ or ϕ				
				with the weight energiad shows being applied to				
				with the weight speched above being applied to				
				one of leads. Then the capacitor is slowly				
				rotated 90 to norizontal position and				
				subsequently returned to vertical position.				
				The above bending procedure takes for 2 \sim 3				
				seconds.				
				An additional bending is done in the opposite				
				direction.				
8	Vibrat	ion	Capacitance :	Frequency : 10 ~ 55 Hz				
			Measured value is to be stabilized	(1 minute per cycle.)				
			during test. (Measured several times	Total Amplitude :1. 5 mm				
			within 30 min.	Direction and Duration of Vibration :				
			before completion of test)	It is done in the X, Y, Z axis direction for 2				
			Appearance :	hours each, with a total of 6 hours.				
			No significant change can be	Mounting Method :				
			observed	The capacitor shall be fixed with its lead wires				
			Canacitance Change :	at the point of 4 mm from the bottom of				
			Within $\pm 5\%$ of the initially	capacitor body. The capacitor with diameter				
				greater than 12.5 mm or langer than 25 mm				
			measureu value.	greater than 12. 5 million longer than 25 million				
0	0.1.1	- I. 1124	Mana than 2/4 af tha tamainal and a	nust be fixed in place with a bracket.				
9	Solder	ability	More than 3/4 of the terminal surface					
			shall be covered with new solder.	Solder Temperature : 235±5 C				
				Immersing lime : 2 ± 0.5 sec.				
				Immersing Depth : 1. 5 \sim 2. 0 mm from the root.				
				Flux : Approx. 25% rosin (JIS K5902)				
				in ETHANOL (JIS K8101)				
10	Resist	ance to	Leakage Current :	Solder Type : H60A, H60S, or H63A (JIS Z3282)				
	Solder	ing Heat	\leq the value of item 6.1.	Solder Temperature : 260 \pm 5 $^{\circ}$ C				
			Capacitance Change :	Immersing Time : 10 ± 1 sec.				
			Within $\pm 10\%$ of the initially	Immersing Depth : 1.5 \sim 2.0 mm from the root.				
			measured value.					
			Tangent of Loss Angle (tan δ):					
			\leq the value of item 6. 3.					
			Appearance :					
			No significant change can be					
			observed.					
			0.001704.	I				

Remarks

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

A type FJ series

7
1

	Item	Performance Characteristics	ļ	Test	
11	Solvent	There shall be no damage and legible	Class of Reagent :	Isopropyl A	lcohol
	Resistance of	marking. Marking can be easily	Test Temperature :	20 ~ 25 °C	>
	Marking	comprehended.	Immersing Time :	30 ± 5 sec.	
12	Pressure Relief	Pressure relief shall be operated without	AC Current Method		
		any hazardous expulsion or emission of	R		
		flame.			
		No emission of gas after 30 minutes of	A C. Power supply	c×7///	
		the voltage application also meets the		ļ	
		specification.	50Hz or 60Hz		
			(A):A C. ammeter R : S	Series resister	
			(V):A.C. voltmeter Cx	:Tested capacitor	
			Applied Voltage :		
			AC voltage equals	to rated W.	V. × 0.7 or
			250 V (rms), which	ever is sma	ller.
			Gapacitance		DC Resistance
			(μr) <1		(<u>)</u> 1000+100
			≥ 1 >1 ≤ 10		100 ± 100 100 ± 10
			>10 ≦100		10±1
			>100 ≦1000		1 ± 0.1
			>1000 ≦1000	0	0.1 ± 0.01
			>10000		*
			* When capacitance is	over 10000	μ F,the value
			of series resistance	equals to th	ne half of the
			tested capacitor s i	mpedance.	
			Reverse voltage metri	ou	
				(<u>A</u>)	7
				7	<u> </u>
			Power supply	Cx /	<u>///</u>
			-		↓ + _
			(<u>A</u>):D.C. ammeter	Cx:Tested capa	acitor
			Newinel Diemeter F		0 0
			INOMINAL DIAMETER [r	umy L	$(\mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{r}, \mathbf{r}, \mathbf{o}, \mathbf{n}, \mathbf{r}, \mathbf{u}, \mathbf{u})$
			< ?? A		1 (const)
			≦22.4 >22.4		1 (const)

A type FJ series

	Item	Performance Characteristics	Test
13	Damp Heat	Leakage Current :	Test Temperature : 40±2 °C
	(Steady state)	\leq the value of item 6.1.	Relative Humidity : 90 ~ 95%
		Capacitance Change :	Test Duration : 240±8 hours
		Within $\pm 20\%$ of the initially	
		measured value.	After subjected to the test, capacitors shall
		Tangent of Loss Angle (tan δ):	be left for 2 hours at room temperature and
		\leq 120% the value of item 6. 3.	room humidity prior to the measurement.
		Appearance :	
		No significant change can be	
		observed.	
14	Endurance	Leakage Current :	Under 12.5mm Height
		\leq the value of item 6.1.	Test Temperature : 105±2 °C
		Capacitance Change :	Test Duration : 2000 ⁺⁷² hours
		Under 12.5mm Height	Applied Voltage : Rated voltage
		Within $\pm 25\%$ of the initially	Over 15mm Height
		measured value.	Test Temperature : 105 ± 2 °C
		(code″U″,″Y″:±30%)	Test Duration : $3000 + 72_{0}$ hours
		Over 15mm Height	Applied Voltage : Rated voltage
		Within $\pm 35\%$ of the initially	
		measured value.	
		Tangent of Loss Angle (tan δ):	
		\leq 200% of the value of item 6. 3.	After subjected to the test, capacitors shall be left at
		Appearance :	room temperature and room humidity for 2 hours prior
		No significant change can be	to the measurement.
		observed.	
15	Shelf Life	Leakage Current :	Test Temperature : 105±2 °C
		\leq the value of item 6.1.	Test Duration $: 1000^{+48}$ hours
		Capacitance Change :	
		Under 12.5mm Height	
		Within $\pm 25\%$ of the initially	
		measured value.	
		(code″U″,″Y″:±30%)	
		Over 15mm Height	After subjected to the test with no voltage applied,
		Within $\pm 35\%$ of the initially	capacitors shall undergo voltage treatment st and
		measured value.	be left for 1 \sim 2 hours at room temperature and
		Tangent of Loss Angle (tan δ):	humidity prior to the measurement.
		\leq 200% of the value of item 6. 3.	
		Appearance :	
		No significant change can be	
		-	

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

	I	Electrolytic	c Capaci	itor Engi	neering l	Draft		CE-E-AFJ-07
		A	type	FJ sei	ries			9
<u>7. Mar</u> (1) <u>8. Oth</u>	rking Markings indicat a) Rated Volta b) Capacitance c) Negative Po d) Matsushita e) Upper Cate f) Series Code g) Lot No.	ed on the p ge. a larity Electric Tra gory Temper a	roducts : demark rature		 (2) La a) b) c) d) e) f) g) 	bel On the Rated Vo Matsush Part Nur Packing Serial No Manufac Country	Packaging Box I oltage, Capacitar ita Electric Trad nber Quantity o. turer's Name of Origin	by English nce emark
	Unless oth	erwise spec	cified, the	product	shall conf	orm to JIS	S C 5141.	
	Table 1. Tang V.DC D.F.(max.)	ent of Loss 6.3 0.22	Angle(tan 10 0.19	δ) 16 0.16	25 0.14	35 0.12	50 2 0.10	
	Added U. UZ pe	r 1000 μ F 1	for items	with over	1000 μ F	items.		
	Table 2.Chara	cteristics at	low temp	erature In	npedance	ratio (at 12	20 Hz)	
	$Z(-25^{\circ}C)/Z(20)$	°C)(max.)	0.3 3	3	3	25	30 5	3
	100~330 390~1000 1200~4700 * Rated ripple	0.40 0.50 0.55 current sha	0.75 0.85 0.90	0.93 0.95 0.98 ulated as	1.00 1.00 1.00 below :			
				Whe	re			_
	Ip=Ixkt				lp = I = kf=	Rated Rig Specified Frequenc	pple Current Ripple Current y Correction Fa	at 100 kHz
	In case the cal rated voltage,	culated ripp the rated rip	ole curren ople curre	t is too h ent shall b Whe	igh and th e calculat ere	e peak-to ed by the	-peak ripple vol following formu	tage exceeds its la.
	Ip'=π xfx	C x VN / 、	√2 x 10 ⁻	6	I p'= f = C = VN=	Rated Rip Frequenc Capacitar Rated Vo	ple Current [A y [Hz] nce [uF] Itage [V]	rms]
emarks								
		Matsushit	a Electron	ic Compo	nents Co.,I	td. LCR I	Device Company	
				Capacito	or Busines	s Unit		

A type FJ series

10

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Leakage	Rated Ripple	ES	SR				Endurance	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Part No.	V.DC	Cap.	Current	Current	(Ωn	nax.)	Dim. [mm]]	(hours)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			μF	μΑ	mA rms	100	kHz					
EEUFJOJSE1 6.3 360 35.2 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJOJ102U 6.3 1000 63.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJOJ102 6.3 1000 63.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJOJ152L 6.3 1500 94.5 1870 0.016 0.048 8 20 0.6 3000 EEUFJOJ152L 6.3 1500 94.5 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJOJ182L 6.3 1800 113.4 1870 0.016 0.048 8 20 0.6 3000 EEUFJOJ222V 6.3 2200 138.6 2500 0.013 0.039 10 20 0.6 3000 EEUFJOJ222V 6.3 2000 170.1 2550 0.013 0.039 10				max.	max.*1	+20°C	-10°C	ϕ D	L	ϕ d	h	
EEUFJJJ2U 6.3 120 51.6 1140 0.030 0.990 8 11.5 0.6 2000 EEUFJJJ102 6.3 1000 63.0 1140 0.025 0.075 10 12.5 0.6 2000 EEUFJJJ122 6.3 1200 75.6 1490 0.028 0.084 8 15 0.6 3000 EEUFJJJ152 6.3 1500 94.5 1540 0.025 0.075 10 12.5 0.6 3000 EEUFJJ152 6.3 1500 94.5 2000 0.018 0.054 10 16 0.6 3000 EEUFJJ182U 6.3 1800 113.4 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0.1222 6.3 2200 138.6 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0.3222 6.3 3000 207.9 2800 0.012 0.036 12.5	EEUFJ0J561	6.3	560	35.2	1140	0.030	0.090	8	11.5	0.6	2000	
EEUFJ0J102U 6.3 1000 63.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ0J122 6.3 1000 75.6 1490 0.025 0.075 10 12.5 0.6 2000 EEUFJ0J152L 6.3 1500 94.5 1870 0.016 0.048 8 10 16 0.6 3000 EEUFJ0J152U 6.3 1500 94.5 1200 0.018 0.054 10 16 0.6 3000 EEUFJ0J182Y 6.3 1800 113.4 1870 0.016 0.048 8 20 0.6 3000 EEUFJ0J222Y 6.3 2200 138.6 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J222U 6.3 2700 170.1 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J322U 6.3 3300 207.9 2800 0.012 0.036	EEUFJ0J821U	6.3	820	51.6	1140	0.030	0.090	8	11.5	0.6	2000	
EEUFJ0J102 6.3 1000 63.0 1540 0.028 0.084 8 15 0.6 2000 EEUFJ0J152L 6.3 1300 94.5 1870 0.016 0.048 8 20 0.6 3000 EEUFJ0J152L 6.3 1500 94.5 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ0J152L 6.3 1500 94.5 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J152L 6.3 1800 113.4 1870 0.016 0.048 8 20 0.6 3000 EEUFJ0J222Y 6.3 2200 138.6 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J322Y 6.3 3300 207.9 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J32Y 6.3 3300 207.9 2800 0.012 0.36 10	EEUFJ0J102U	6.3	1000	63.0	1140	0.030	0.090	8	11.5	0.6	2000	
EEUFJQJ122Y 6.3 1200 75.6 1490 0.028 0.084 8 15 0.6 3000 EEUFJQJ152L 6.3 1500 94.5 1540 0.025 0.075 10 12.5 0.6 3000 EEUFJQJ152 6.3 1500 94.5 2000 0.018 0.054 10 16 0.6 3000 EEUFJQJ182Y 6.3 1800 113.4 1870 0.016 0.048 8 20 0.6 3000 EEUFJQJ222Y 6.3 2200 138.6 1870 0.016 0.054 10 16 0.6 3000 EEUFJQJ222Y 6.3 2200 138.6 2550 0.013 0.039 10 20 0.6 3000 EEUFJQJ322U 6.3 3300 207.9 2550 0.013 0.039 10 20 0.6 3000 EEUFJQJ322U 6.3 3300 207.9 2800 0.012 0.036 12.5	EEUFJ0J102	6.3	1000	63.0	1540	0.025	0.075	10	12.5	0.6	2000	
EEUFJ0J152L 6.3 1500 94.5 1870 0.016 0.048 8 20 0.6 3000 EEUFJ0J152L 6.3 1500 94.5 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ0J152L 6.3 1500 94.5 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J182Y 6.3 1800 113.4 1870 0.016 0.048 8 20 0.6 3000 EEUFJ0J222L 6.3 2200 138.6 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J222L 6.3 2700 170.1 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J322L 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J332L 6.3 3300 207.9 2800 0.012 0.036 12.5 </td <td>EEUFJ0J122Y</td> <td>6.3</td> <td>1200</td> <td>75.6</td> <td>1490</td> <td>0.028</td> <td>0.084</td> <td>8</td> <td>15</td> <td>0.6</td> <td>3000</td>	EEUFJ0J122Y	6.3	1200	75.6	1490	0.028	0.084	8	15	0.6	3000	
EEUFJ0J152U 6.3 1500 94.5 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ0J152 6.3 1500 94.5 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J182U 6.3 1800 113.4 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J222Y 6.3 2200 138.6 2500 0.018 0.034 10 20 0.6 3000 EEUFJ0J222Y 6.3 2200 138.6 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J272U 6.3 3300 207.9 2800 0.012 0.036 10 25 0.6 3000 EEUFJ0J322 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J322 6.3 3300 207.9 2800 0.012 0.036 12.5 </td <td>EEUFJ0J152L</td> <td>6.3</td> <td>1500</td> <td>94.5</td> <td>1870</td> <td>0.016</td> <td>0.048</td> <td>8</td> <td>20</td> <td>0.6</td> <td>3000</td>	EEUFJ0J152L	6.3	1500	94.5	1870	0.016	0.048	8	20	0.6	3000	
EEUFJ0J152 6.3 1500 94.5 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J182Y 6.3 1800 113.4 1870 0.016 0.048 8 20 0.6 3000 EEUFJ0J182U 6.3 2200 138.6 1870 0.016 0.048 8 20 0.6 3000 EEUFJ0J222U 6.3 2200 138.6 2000 0.018 0.039 10 20 0.6 3000 EEUFJ0J222U 6.3 2700 170.1 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J322U 6.3 3300 207.9 2550 0.012 0.036 10 25 0.6 3000 EEUFJ0J322Y 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J372U 6.3 4700 296.1 2800 0.012 0.036 12.5 <td>EEUFJ0J152U</td> <td>6.3</td> <td>1500</td> <td>94.5</td> <td>1540</td> <td>0.025</td> <td>0.075</td> <td>10</td> <td>12.5</td> <td>0.6</td> <td>2000</td>	EEUFJ0J152U	6.3	1500	94.5	1540	0.025	0.075	10	12.5	0.6	2000	
EEUFJ0J182Y 6.3 1800 113.4 1870 0.016 0.048 8 2.0 0.6 3000 EEUFJ0J182U 6.3 1800 113.4 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J222U 6.3 2200 138.6 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J222U 6.3 2200 138.6 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J322U 6.3 2700 170.1 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J332U 6.3 3300 207.9 2800 0.012 0.036 10 2.5 0.6 3000 EEUFJ0J332Y 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J342H 10 470 47.0 1140 0.030 0.990 8 <td>EEUFJ0J152</td> <td>6.3</td> <td>1500</td> <td>94.5</td> <td>2000</td> <td>0.018</td> <td>0.054</td> <td>10</td> <td>16</td> <td>0.6</td> <td>3000</td>	EEUFJ0J152	6.3	1500	94.5	2000	0.018	0.054	10	16	0.6	3000	
EEUFJ0J182U 6.3 1800 113.4 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J222Y 6.3 2200 138.6 1870 0.016 0.048 8 20 0.6 3000 EEUFJ0J222V 6.3 2200 138.6 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J22V1 6.3 2700 170.1 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J322V 6.3 3300 207.9 2550 0.012 0.036 10 25 0.6 3000 EEUFJ0J332V 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J347U 6.3 4700 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ1A471 10 4700 47.0 1140 0.030 0.090 8 <td>EEUFJ0J182Y</td> <td>6.3</td> <td>1800</td> <td>113.4</td> <td>1870</td> <td>0.016</td> <td>0.048</td> <td>8</td> <td>20</td> <td>0.6</td> <td>3000</td>	EEUFJ0J182Y	6.3	1800	113.4	1870	0.016	0.048	8	20	0.6	3000	
EEUFJ0J222Y 6.3 2200 138.6 1870 0.016 0.048 8 20 0.6 3000 EEUFJ0J222U 6.3 2200 138.6 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J222U 6.3 2200 138.6 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J322U 6.3 3300 207.9 2250 0.013 0.039 10 20 0.6 3000 EEUFJ0J322U 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J322U 6.3 4700 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ1AG81 10 47.0 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ1A681 10 47.0 1140 0.030 0.090 8 11.5 <td>EEUFJ0J182U</td> <td>6.3</td> <td>1800</td> <td>113.4</td> <td>2000</td> <td>0.018</td> <td>0.054</td> <td>10</td> <td>16</td> <td>0.6</td> <td>3000</td>	EEUFJ0J182U	6.3	1800	113.4	2000	0.018	0.054	10	16	0.6	3000	
EEUFJ0J222U 6.3 2200 138.6 2000 0.018 0.054 10 16 0.6 3000 EEUFJ0J222 6.3 2200 138.6 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J322U 6.3 2700 170.1 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J332U 6.3 3300 207.9 2800 0.012 0.036 10 25 0.6 3000 EEUFJ0J332U 6.3 300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J472U 6.3 4700 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJA0472U 6.3 4700 296.1 2800 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A471 10 47.0 1140 0.030 0.990 8 11.5 <td>EEUFJ0J222Y</td> <td>6.3</td> <td>2200</td> <td>138.6</td> <td>1870</td> <td>0.016</td> <td>0.048</td> <td>8</td> <td>20</td> <td>0.6</td> <td>3000</td>	EEUFJ0J222Y	6.3	2200	138.6	1870	0.016	0.048	8	20	0.6	3000	
EEUFJ0J222 6.3 2200 138.6 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J272U 6.3 2700 170.1 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J332Y 6.3 3300 207.9 2800 0.012 0.036 10 25 0.6 3000 EEUFJ0J332Y 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J342Y 6.3 4700 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ1A481 10 4700 47.0 1140 0.030 0.900 8 11.5 0.6 2000 EEUFJ1A681 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 3000 EEUFJ1A102L 10 1000 100.0 1800 0.016 0.048 8	EEUFJ0J222U	6.3	2200	138.6	2000	0.018	0.054	10	16	0.6	3000	
EEUFJ0J272U 6.3 2700 170.1 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J332U 6.3 3300 207.9 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J332Y 6.3 3300 207.9 2800 0.012 0.036 10 25 0.6 3000 EEUFJ0J332Y 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J472U 6.3 4700 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ1A681U 10 680 68.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1A681U 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 1540 0.025 0.075 10 <td>EEUFJ0J222</td> <td>6.3</td> <td>2200</td> <td>138.6</td> <td>2550</td> <td>0.013</td> <td>0.039</td> <td>10</td> <td>20</td> <td>0.6</td> <td>3000</td>	EEUFJ0J222	6.3	2200	138.6	2550	0.013	0.039	10	20	0.6	3000	
EEUFJ0J332U 6.3 3300 207.9 2550 0.013 0.039 10 20 0.6 3000 EEUFJ0J332Y 6.3 3300 207.9 2800 0.012 0.036 10 25 0.6 3000 EEUFJ0J332 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J472U 6.3 4700 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ1A471 10 470 47.0 1140 0.030 0.90 8 11.5 0.6 2000 EEUFJ1A681U 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 1540 0.025 0.075 10 12.5 0.6 3000 EEUFJ1A102L 10 1000 100.0 2000 0.018 0.054 10	EEUFJ0J272U	6.3	2700	170.1	2550	0.013	0.039	10	20	0.6	3000	
EEUFJ0J332Y 6.3 3300 207.9 2800 0.012 0.036 10 25 0.6 3000 EEUFJ0J322 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J322 6.3 4700 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ1A471 10 470 47.0 1140 0.030 0.990 8 11.5 0.6 2000 EEUFJ1A681 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152V 10 1500 150.0 1870 0.016 0.048 8	EEUFJ0J332U	6.3	3300	207.9	2550	0.013	0.039	10	20	0.6	3000	
EEUFJ0J332 6.3 3300 207.9 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ0J472U 6.3 4700 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ1A471 10 47.0 47.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1A681U 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A681 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1A102L 10 1000 100.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A52V 10 1500 150.0 2550 0.013 0.039 10	EEUFJ0J332Y	6.3	3300	207.9	2800	0.012	0.036	10	25	0.6	3000	
EEUFJ0J472U 6.3 4700 296.1 2800 0.012 0.036 12.5 20 0.6 3000 EEUFJ1A471 10 47.0 47.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1A681 10 680 68.0 1140 0.030 0.990 8 11.5 0.6 2000 EEUFJ1A681 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1A102 10 1000 100.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152 10 150.0 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A22U 10 2200 220.0 2550 0.013 0.039 10 <	EEUFJ0J332	6.3	3300	207.9	2800	0.012	0.036	12.5	20	0.6	3000	
EUFJ1A471 10 47.0 47.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1A681U 10 680 68.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1A681 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A681 10 1000 100.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1A102L 10 1000 100.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152V 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A22U 10 2200 2200 2550 0.013 0.039 10 <td< td=""><td>EEUFJ0J472U</td><td>6.3</td><td>4700</td><td>296.1</td><td>2800</td><td>0.012</td><td>0.036</td><td>12.5</td><td>20</td><td>0.6</td><td>3000</td></td<>	EEUFJ0J472U	6.3	4700	296.1	2800	0.012	0.036	12.5	20	0.6	3000	
EEUFJ1A471 10 470 47.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1A681U 10 680 68.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1A681 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1A102L 10 1000 100.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152Y 10 1500 150.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A222U 10 2200 220.0 2550 0.013 0.039 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
EEUFJ1A681U 10 680 68.0 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1A681 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1A102L 10 1000 100.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152Y 10 1500 150.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A222U 10 2200 220.0 2550 0.013 0.039 10	EEUFJ1A471	10	470	47.0	1140	0.030	0.090	8	11.5	0.6	2000	
EEUFJ1A681 10 680 68.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1A102L 10 1000 100.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102L 10 1000 100.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152Y 10 1500 150.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152V 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A222U 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C471U 16 470 75.2 1140 0.030 0.090 8	EEUFJ1A681U	10	680	68.0	1140	0.030	0.090	8	11.5	0.6	2000	
EEUFJ1A102L 10 1000 1000 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1A102U 10 1000 100.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102 10 1000 100.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152Y 10 1500 150.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1A152Y 10 1500 150.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A222U 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C471U 16 470 75.2 1140 0.030 0.090 8 <td< td=""><td>EEUFJ1A681</td><td>10</td><td>680</td><td>68.0</td><td>1540</td><td>0.025</td><td>0.075</td><td>10</td><td>12.5</td><td>0.6</td><td>2000</td></td<>	EEUFJ1A681	10	680	68.0	1540	0.025	0.075	10	12.5	0.6	2000	
EEUFJ1A102U 10 1000 100.0 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1A102 10 1000 100.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152Y 10 1500 150.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1A152Y 10 1500 150.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152Y 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A222U 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C331 16 330 52.8 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1C471U 16 470 75.2 1540 0.025 0.075 10 <	FEUEJ1A1021	10	1000	100.0	1870	0.016	0.048	8	20	0.6	3000	
EEUFJIA102 10 1000 1000 2000 0.018 0.054 10 16 0.6 3000 EEUFJIA152Y 10 1500 150.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJIA152Y 10 1500 150.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJIA152 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A222U 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C331 16 330 52.8 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1C471U 16 470 75.2 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1C681L 16 680 108.8 1490 0.025 0.075 10 1	FEUFJ1A102U	10	1000	100.0	1540	0.025	0.075	10	12.5	0.6	2000	
EEUFJIA152 10 1500 1500 1870 0.016 0.018 8 20 0.6 3000 EEUFJIA152U 10 1500 150.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJIA152U 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJIA152 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A222U 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C331 16 330 52.8 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1C471U 16 470 75.2 1140 0.025 0.075 10 12.5 0.6 2000 EEUFJ1C681L 16 680 108.8 1870 0.016 0.048 8 2	EEUFJ1A102	10	1000	100.0	2000	0.018	0.054	10	16	0.6	3000	
EEUFJ1A152U 10 1500 1500 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1A152 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A152 10 1500 150.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A222U 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A331 16 330 52.8 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1C471U 16 470 75.2 1140 0.030 0.900 8 11.5 0.6 2000 EEUFJ1C681Y 16 680 108.8 1490 0.025 0.075 10 12.5 0.6 2000 EEUFJ1C681L 16 680 108.8 1870 0.016 0.048 8	EEUFJ1A152Y	10	1500	150.0	1870	0.016	0.048	8	20	0.6	3000	
EEUFJ1A152 10 1500 1500 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A152 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1A222U 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C331 16 330 52.8 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1C471U 16 470 75.2 1140 0.030 0.900 8 11.5 0.6 2000 EEUFJ1C471 16 470 75.2 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1C681Y 16 680 108.8 1490 0.028 0.844 8 15 0.6 3000 EEUFJ1C681L 16 680 108.8 1540 0.025 0.075 10 12.	EEUFJ1A152U	10	1500	150.0	2000	0.018	0.054	10	16	0.6	3000	
EEUFJIA222U 10 2200 2200 2550 0.013 0.039 10 20 0.6 3000 EEUFJIA222U 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJIA222U 10 2200 220.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJIC331 16 330 52.8 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJIC471 16 470 75.2 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681Y 16 680 108.8 1490 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681L 16 680 108.8 1870 0.016 0.048 8 20 0.6 3000 EEUFJIC681L 16 680 108.8 1540 0.025 0.075 10 <td< td=""><td>EEUEJ1A152</td><td>10</td><td>1500</td><td>150.0</td><td>2550</td><td>0.013</td><td>0.039</td><td>10</td><td>20</td><td>0.6</td><td>3000</td></td<>	EEUEJ1A152	10	1500	150.0	2550	0.013	0.039	10	20	0.6	3000	
EEUFJIC331 16 330 52.8 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJIC331 16 330 52.8 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJIC471U 16 470 75.2 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJIC471 16 470 75.2 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681Y 16 680 108.8 1490 0.028 0.084 8 15 0.6 3000 EEUFJIC681L 16 680 108.8 1870 0.016 0.048 8 20 0.6 3000 EEUFJIC681L 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681L 16 680 108.8 1540 0.025 0.075 10 12.	EEUFJ1A22211	10	2200	220.0	2550	0.013	0.039	10	20	0.6	3000	
EEUFJ1C331 16 330 52.8 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1C471U 16 470 75.2 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJ1C471U 16 470 75.2 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1C681Y 16 680 108.8 1490 0.028 0.084 8 15 0.6 3000 EEUFJ1C681L 16 680 108.8 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1C681U 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1C681U 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1C681U 16 680 108.8 2000 0.018 0.054 10 <td< td=""><td></td><td>10</td><td>2200</td><td>220.0</td><td>2000</td><td>0.010</td><td>0.000</td><td></td><td>20</td><td>0.0</td><td></td></td<>		10	2200	220.0	2000	0.010	0.000		20	0.0		
EEUFJIC471U 16 470 75.2 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJIC471U 16 470 75.2 1140 0.030 0.090 8 11.5 0.6 2000 EEUFJIC471 16 470 75.2 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681Y 16 680 108.8 1490 0.028 0.084 8 15 0.6 3000 EEUFJIC681L 16 680 108.8 1870 0.016 0.048 8 20 0.6 3000 EEUFJIC681U 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681U 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681U 16 680 108.8 2000 0.018 0.054 10 <td< td=""><td>FEUEJ1C331</td><td>16</td><td>330</td><td>52.8</td><td>1140</td><td>0.030</td><td>0 0 9 0</td><td>8</td><td>11.5</td><td>0.6</td><td>2000</td></td<>	FEUEJ1C331	16	330	52.8	1140	0.030	0 0 9 0	8	11.5	0.6	2000	
EEUFJIC471 16 470 75.2 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681Y 16 680 108.8 1490 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681Y 16 680 108.8 1490 0.028 0.084 8 15 0.6 3000 EEUFJIC681L 16 680 108.8 1870 0.016 0.048 8 20 0.6 3000 EEUFJIC681L 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681 16 680 108.8 2000 0.018 0.054 10 16 0.6 3000 EEUFJIC102Y 16 1000 160.0 2800 0.018 0.054 10 16 0.6 3000 EEUFJIC102U 16 1000 160.0 <t< td=""><td>EEUEJ1C471U</td><td>16</td><td>470</td><td>75.2</td><td>1140</td><td>0.030</td><td>0.090</td><td>8</td><td>11.5</td><td>0.6</td><td>2000</td></t<>	EEUEJ1C471U	16	470	75.2	1140	0.030	0.090	8	11.5	0.6	2000	
EEUFJIC681Y 16 680 108.8 1490 0.028 0.084 8 15 0.6 3000 EEUFJIC681L 16 680 108.8 1490 0.028 0.084 8 15 0.6 3000 EEUFJIC681L 16 680 108.8 1870 0.016 0.048 8 20 0.6 3000 EEUFJIC681U 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJIC681 16 680 108.8 2000 0.018 0.054 10 16 0.6 3000 EEUFJIC102Y 16 1000 160.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJIC102U 16 1000 160.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJIC102U 16 1000 160.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJIC152U 16 1500 240.0 2	EFUFJ1C471	16	470	75.2	1540	0.025	0.075	10	12.5	0.6	2000	
EEUFJ1C681L 16 680 108.8 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1C681U 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1C681 16 680 108.8 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102Y 16 1000 160.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1C102V 16 1000 160.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102U 16 1000 160.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102 16 1000 160.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1500 240.0 2550 0.013 0.039 10 <t< td=""><td>EEUFJ1C681Y</td><td>16</td><td>680</td><td>108.8</td><td>1490</td><td>0.028</td><td>0.084</td><td>8</td><td>15</td><td>0.6</td><td>3000</td></t<>	EEUFJ1C681Y	16	680	108.8	1490	0.028	0.084	8	15	0.6	3000	
EEUFJ1C681U 16 680 108.8 1540 0.025 0.075 10 12.5 0.6 2000 EEUFJ1C681 16 680 108.8 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102Y 16 1000 160.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1C102U 16 1000 160.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102U 16 1000 160.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102U 16 1000 160.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1500 240.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C182Y 16 1800 288.0 2800 0.012 0.036 10	 EEUFJ1C681L	16	680	108.8	1870	0.016	0.048	8	20	0.6	3000	
EEUFJ1C681 16 680 108.8 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102Y 16 1000 160.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1C102U 16 1000 160.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102U 16 1000 160.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1500 240.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1500 240.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C182Y 16 1800 288.0 2800 0.012 0.036 10 25 0.6 3000	EEUFJ1C681U	16	680	108.8	1540	0.025	0.075	10	12.5	0.6	2000	
EEUFJ1C102Y 16 1000 160.0 1870 0.016 0.048 8 20 0.6 3000 EEUFJ1C102U 16 1000 160.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102U 16 1000 160.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1500 240.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1500 240.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C182Y 16 1800 288.0 2800 0.012 0.036 10 25 0.6 3000	EEUFJ1C681	16	680	108.8	2000	0.018	0.054	10	16	0.6	3000	
LEEUFJ1C102U 16 1000 160.0 2000 0.018 0.054 10 16 0.6 3000 EEUFJ1C102 16 1000 160.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1500 240.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1500 240.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C182Y 16 1800 288.0 2800 0.012 0.036 10 25 0.6 3000	EEUFJ1C102Y	16	1000	160.0	1870	0.016	0.048	8	20	0.6	3000	
EEUFJ1C102 16 1000 160.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1500 240.0 2550 0.013 0.039 10 20 0.6 3000 EEUFJ1C152U 16 1800 288.0 2800 0.012 0.036 10 25 0.6 3000	EEUFJ1C102U	16	1000	160.0	2000	0.018	0.054	10	16	0.6	3000	
EEUFJ1C182Y 16 1800 288.0 2800 0.012 0.036 10 25 0.6 3000	EEUFJ1C102	16	1000	160.0	2550	0.013	0.039	10	20	0.6	3000	
	EEUFJ1C152U	16	1800	240.0	2000	0.013	0.039	10	20 25	0.0	3000	
		10	1000	200.0	2000	0.012	0.000	10	20	0.0	0000	

Remarks

*1 100kHz 105°C

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

A type FJ series

11

				Leakage	Rated Ripple	E	SR				Endurance
	Part No.	V.DC Cap.		Current	Current	(Ω max.)		Dim. [mm]			(hours)
			μF	μΑ	mA rms	100	kHz				
				max.	max.*1	+20°C	-10°C	φD	L	φd	h
	EEUFJ1E221	25	220	55.0	1110	0.030	0.090	8	11.5	0.6	2000
	EEUFJ1E331U	25	330	82.5	1080	0.032	0.096	8	11.5	0.6	2000
	EEUFJ1E331	25	330	82.5	1440	0.025	0.075	10	12.5	0.6	2000
	EEUFJ1E471L	25	470	117.5	1820	0.018	0.054	8	20	0.6	3000
	EEUFJ1E471U	25	470	117.5	1390	0.027	0.081	10	12.5	0.6	2000
	EEUFJ1E471	25	470	117.5	1920	0.020	0.060	10	16	0.6	3000
	EEUFJ1E681Y	25	680	170.0	1720	0.020	0.060	8	20	0.6	3000
	EEUFJ1E681U	25	680	170.0	1830	0.022	0.066	10	16	0.6	3000
	EEUFJ1E681	25	680	170.0	2180	0.016	0.048	10	20	0.6	3000
	EEUFJ1E102U	25	1000	250.0	2060	0.018	0.054	10	20	0.6	3000
	EEUFJ1V151	35	150	52.5	1110	0.030	0.090	8	11.5	0.6	2000
	EEUFJ1V221U	35	220	77.0	1080	0.032	0.096	8	11.5	0.6	2000
	EEUFJ1V221	35	220	77.0	1440	0.025	0.075	10	12.5	0.6	2000
	EEUFJ1V331L	35	330	115.5	1820	0.018	0.054	8	20	0.6	3000
	EEUFJ1V331U	35	330	115.5	1390	0.027	0.081	10	12.5	0.6	2000
	EEUFJ1V331	35	330	115.5	1920	0.020	0.060	10	16	0.6	3000
	EEUFJ1V391Y	35	390	136.5	1720	0.020	0.060	8	20	0.6	3000
	EEUFJ1V391U	35	390	136.5	1830	0.022	0.066	10	16	0.6	3000
	EEUFJ1V471	35	470	164.5	2180	0.016	0.048	10	20	0.6	3000
	EEUFJ1V561U	35	560	196.0	2060	0.018	0.054	10	20	0.6	3000
	EEUFJ1H101	50	100	50.0	920	0.046	0.138	8	11.5	0.6	2000
	EEUFJ1H121U	50	120	60.0	890	0.049	0.147	8	11.5	0.6	2000
	EFUEJ1H151	50	150	75.0	1230	0.036	0.108	10	12.5	0.6	2000
	EEUFJ1H181U	50	180	90.0	1180	0.039	0.117	10	12.5	0.6	2000
	FFUFJ1H221	50	220	110.0	1680	0.023	0.069	8	20	0.6	3000
	EFUEJ1H221	50	220	110.0	1720	0.026	0.078	10	16	0.6	3000
	FFUE.11H271V	50	270	135.0	1610	0.025	0.075	8	20	0.6	3000
	EEUF.11H271U	50	270	135.0	1630	0.020	0.087	10	16	0.0	3000
	EEUE 11H271	50	270	135.0	1890	0.023	0.062	10	20	0.0	3000
		50	270	165.0	1800	0.021	0.003	10	20	0.0	3000
		50	330	100.0	1000	0.023	0.009	10	20	0.0	3000

Remarks

*1 100kHz 105°C

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Elec	trolytic Capacito	r Enginee	ring Drat	ft		(CE-E-AFJ-07
	A type F	J series	6				12
Snap-In Lead Formed Ty	rpe (Matsushita Par	t No. Suffix	(:E)				
ϕ 8							
			φ D+0	. 5max.			
φ10 ~ φ12.5							
		<u>6 d</u> 	ш.	¢ D+0.	5max. * Directio	on of ben	ding is random.
							[mm]
ϕ D H1±0.5	H2 H3 max.	F±0.5	Р	E max.	ϕ d \pm 0.05	Ρ.' φ	W.B t
8 4.5 10 4.5	2.7 2.5 2.7 —	5.0 5.0	1.00 1.00	1.0 1.0	0.60	1.0 1.0	1.6 1.6
<u> 12.5 4.5</u> Remarks *The lead form not to the cu Due to the a	<u>2./</u> ning dimensions abov stomer's incoming ir oplication of mechan	re shall only nspection. ical stress	ı 1.00 y be subje during tra	1.0 cted to ou nsportatio	r outgoing ir n, actual dir	1.0 nspectior nensions	<u>1 1.6</u> n and might
not meet the	specification.		<u> </u>	1000			
Ma	atsushita Electronic (C	Jomponent apacitor Bi	s Co.,Ltd. usiness Un	LCR Devi nit	ce Company	1	

,	Electrolytic	Capacitor Engineerin	ıg Draft		CE-E-AFJ-07
	A	type FJ series			13
_ead Taping (Body Dian 1) Applicable Range This specification is that taped with singl	neter ϕ 8) T applied to pro le tape.	The Suffix of Matsushita ducts, which are Aluminu	Taping Part Nu m Electrolytic	ımber : B Capacitors (JIS04 typ	e)
2) Taping Shape & Dim	ensions				
	W2 W0	$\begin{array}{c c} \Delta P & \psi \\ \hline \\$			
				······································	[mm]
Item	Symbol	Dimensions	Tolerance	Remai	ks
Body diameter	φD	8	+0.5		
Body length		11.5 ~ 20.0			
Lead wire diameter	φα	U.0 107	± 0.05		
Boay pilon Food hole nitch *1	P0	12.7	+02		
Hole center to lead	P1	3.85	±0.5	Specified by the contact tape & lead	t surface between
Feed hole center to product center	P2	6.35	±1.00		
Lead to lead distance	F	5.0	+0.8	Specified by the contact	t surface between
	'	0.0	-0.2	tape & lead	
Mount tape	W	18.0	±0.5		
Adhesive tape	WO	<u>6.0 ≦</u>			
Hole position	<u>W1</u>	9.0	±0.5		
Adhesive tape slipping	VVZ	0~1.5	-0.75		
Height of product	н	20.0	+0.75		
from the center		16.0	-0.50		
Lead wire clinch height		10.0	±0.5 ±0.2		
Feed note diameter	γD0 	<u>4.0</u> 1 0 >	<u> </u>	Specified by the top of :	an aluminum can
Inclination of body		<u>1.0 ⊨</u> 1 0 ≥		Specified by the top of a	an aluminum can an aluminum can
Total tape thickness	 t	0.6	±0.3	CP wire is excluded	
*1 Cumulative deviation	of "feed hole	nitch" shall be less than	1 mm in 20 sec	tions.	
*2 Lead forming angle A=90° min					

Remarks

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Remarks

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07
A type FJ series	17
 2. Packing Method 2-1 Taped products shall be packed in an inner carton (the smallest packing unit) in the zigza In an inner carton, the lead wires with positive polarity are not to be placed on the top of with negative polarity and vice versa (however, the last sentence does not apply to bipola (Examples) (Examples) ↓ for a data data data data data data data d	ag pattern. lead wires r products). nit at corner.
 * The products shall be handled with care. * The products shall be handled with care. C Right X X X Yrong X Y	
Remarks	

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07

A type FJ series

2-5 The shape & dimensions of inner cartons shall be as follows.

Can s	size	(a)	(b)	(c)
φD	L			
φ8	~20	340	55	320
φ ¹⁰	~16	340	55	320
	20	340	62	320
	25	340	66	320
φ12.5	20	340	65	320

Note : The dimensions listed above are subject to change without notice, depending on the auto-insert machine.

2-6 Packing quantity

Product diameter	Inner carton quantity	Outer carton quantity
	Min. packing quantity	
(mm)	(pcs)	(pcs)
φ8	1,000	5,000
φ 10	500	2,000
φ 12.5	500	2,000

3. Storage

3-1 With respect to the handling method, follow Item 2-3 in this specification.

3-2 Products shall be out of direct sun light. In addition, the temperature and humidity shall be normal.

4. Ordering Unit

The order shall be placed with a multiple of the inner carton quantity.

Examples : $\phi 8$: minimum 1000 pcs

 ϕ 10 \sim ϕ 12. 5 : minimum 500 pcs

Remarks

* Label On the Packaging Box by English

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07
Application Guidelines	19
 Circuit Design Operating Temperature and Frequency Electrical parameters for electrolytic capacitors are normally specified at 20 °C temperature and 120 Hz frec These parameters vary with changes in temperature and frequency. Circuit designers should take these cha 	quency. Inges into consideration.
 (1) Effects of operating temperature on electrical parameters a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (E b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (E 	ESR) decreases. ESR) increases.
 (2) Effects of frequency on electrical parameters a) At higher frequencies, capacitance and impedance decrease while tan δ increases. b) At lower frequencies, heat generated by ripple current will rise due to an increase in equivalent series r 	resistance (ESR).
 1.2 Operating Temperature and Life Expectancy (1) Expected life is affected by operating temperature. Generally, each 10 °C reduction in temperature will Use capacitors at the lowest possible temperature below the upper category temperature. 	I double the expected life.
(2) If operating temperatures exceed the upper category limit, rapid deterioration of electrical parameter will irreversible damage will result. Check for the maximum capacitor operating temperatures including ambient temperature, internal capacitidue to ripple current, and the effects of radiated heat from power transistors, IC's or resistors.	occur and tor temperature rise
Avoid placing components, which could conduct heat to the capacitor from the back side of the circuit b (3) The formula for calculating expected life at lower operating temperatures is as follows ; T1-T2	oard.
$\begin{array}{rcl} L_2 = L_1 \times 2 & \hline 10 \\ L_1 &: & \text{Guaranteed life (h) at temperature, } T_1 ^{\circ} C \\ L_2 &: & \text{Expected life (h) at temperature, } T_2 ^{\circ} C \\ T_1 &: & \text{Upper category temperature (}^{\circ} C) \\ T_2 &: & Actual operating temperature, ambient temperature + temperature rise due to ripple current heater temperature - temperature rise due to ripple current heater temperature - tempera$	ating(°C)
1.3 Common Application Conditions to Avoid The following misapplication load conditions will cause rapid deterioration of a capacitor's electrical parameter In addition, rapid heating and gas generation within the capacitor can occur, causing the pressure relief vent t resultant leakage of electrolyte. Under extreme conditions, explosion and fire ignition could result. The leaked electrolyte is combustible and electrically conductive.	rs. o operate and
(1) Reverse Voltage DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or unc polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.	ertain
(2) Charge / Discharge Applications Standard capacitors are not suitable for use in repeating charge/discharge applications. For charge/dis applications, consult us with your actual application condition.	charge
(3) Over voltage Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage the rated voltage.	e rating are acceptable ge does not exceed
(4) Ripple Current Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications designed for high ripple currents. In addition, consult us if the applied ripple current is to be higher than value. Ensure that rated ripple currents that superimposed on low DC bias voltages do not cause rever-	s, use a capacitor ı the maximum specified se voltage conditions.
 1.4 Using Two or More Capacitors in Series or Parallel (1) Capacitors Connected in Parallel The circuit resistance can closely approximate the series resistance of the capacitor, causing an imbalan within the capacitors. Careful wiring methods can minimize the possible application of an excessive ripp capacitor. 	ice of ripple current loads ole current to a
(2) Capacitors Connected in Series Differences in normal DC leakage current among capacitors can cause voltage imbalances. The use of shunt resistors with consideration to leakage currents can prevent capacitor voltage imbalances.	voltage divider
Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit	
Design, Specifications are subject to change without notice. Contact your nearest Panasonic sales office for the latest specifications prior to purchase a about safety comes up with this product, please contact us immediately for engineering assistance without fail. Specifications are typical and may no	nd/or use. Whenever any doubt t apply to all applications.

E	Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07
	Application Guidelines	20
1.5 Capacitor Mounting Consi (1) Double-Sided Circuit Bo Avoid wiring pattern ru an excess solder may o	iderations pards uns, which pass between the mounted capacitor and the circuit board. M deposit under the capacitor by capillary action, causing short circuit betw	Vhen dipping into a solder bath, veen anode and cathode terminals.
(2) Circuit Board Hole Posit The vinyl sleeve of the Special care when loca	tioning e capacitor can be damaged if solder passes through a lead hole into the s ating hole positions in proximity to capacitors is recommended.	subsequently processed parts.
(3) Circuit Board Hole Spac The spacing of circuit H Incorrect spacing can o This may result in pren	ing board holes should match the lead wire spacing of capacitors within the s cause an excessive lead wire stress during the insertion process. mature capacitor failure due to the short or open circuit, increased leakag	specified tolerances. ge current, or electrolyte leakage.
 (4) Clearance for Case Mou Capacitors with case m The minimum clearance φ6. 3 ~ φ16 mm : 2 	inted Pressure Relief nounted pressure relief require sufficient clearance to allow proper press es are dependent of capacitor diameters as follows. mm minimum, ϕ 18 ~ ϕ 35 mm : 3 mm minimum, ϕ 40 mm or greater : 5 m	ure relief operation. m minimum.
(5) Clearance for Seal Mour Provide a hole on a cir	nted Pressure Relief cuit board to relieve gas when a pressure relief of a capacitor is situated	underneath of the circuit board.
(6) Wiring Near the Pressure Avoid locating high volt Flammable, high tempe	e Relief tage, high current wiring, or circuit board paths above the pressure relief trature gas that exceeds 100 $^\circ\!C$ may be released and could dissolve the	wire insulation and ignite.
(7) Circuit Board Patterns l Avoid circuit board run	Under the Capacitor ns underneath the capacitor, as an electrical short can occur due to an el	lectrolyte leakage.
(8) Screw Terminal Capacito Do not orient the capa Tighten the terminal ar	for Mounting acitor with the screw terminal side of the capacitor facing downward. Ind mounting bracket screws within the torque range specified in the spec	ification.
1.6 Electrical Isolation of the Completely isolate the capa (1) Between the cathode an (2) Between the extra mour	Capacitor acitor as follows. nd the case (except for axially leaded B types) and between the anode te nting terminals (on T types) and the anode terminal, cathode terminal, and	rminal and other circuit paths. d other circuit paths.
1.7 Capacitor Sleeve The vinyl sleeve or laminat the capacitor. The sleeve may split or cra temperatures.	te coating is intended for marking and identification purposes and is not r rack if immersed into solvents such as toluene or xylene and then subseq	neant to electrically insulate uently exposed to high
Always consider safet Plan for the worst cas (1) Provide (2) Design r operatio	CAUTION! ty when designing equipment and circuits. se failure modes such as short circuits and open circuits, which could oc protection circuits and protection devices to allow safe failure modes. redundant or secondary circuits where possible to assure the continued on in case of main circuit failure.	cur use.
	Matsushita Electronic Components Co.,Ltd. LCR Device Compar	ny

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07
Application Guidelines	21
 Capacitor Handling Techniques Considerations Before Using Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about 1k Ω. Capacitors stored for a long period of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately 1k Ω. If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacit (5) Dented or crushed capacitors should not be used. The seal integrity can be damaged and loss of ele result. 	tors. ctrolyte/shortened life ca

2.2 Capacitor Insertion

- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before insertion.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the lead clinching operation done by auto insertion equipments does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Apply soldering conditions (temperature and time) based on the specification, or do not exceed temperature of 350 °C for 3 seconds or less.
- (2) If lead wires must be modified to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress on the capacitor leads.
- (4) Avoid physical contacts between the tip of the soldering iron and capacitors to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Apply proper soldering conditions (temperature, time, etc.). Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rise during the preheat operation and resin bonding operation can cause cracking of the capacitor's vinyl sleeve. For heat curing, do not exceed 150 °C for the maximum time of 2 minutes.

2.6 Capacitor Handling after Soldering

- (1) Avoid moving the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2) Do not use the capacitor as a handle when moving the circuit board assembly.
- (3) Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

(1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up to 5 minutes and up to 60 °C maximum temperatures. The boards should be thoroughly rinsed and dried.

The use of ozone depleting cleaning agents is not recommended for the purpose of protecting our environment.

(2) Avoid using the following solvent groups unless specifically allowed in the specification;

- Halogenated cleaning solvents : except for solvent resistant capacitor types, halogenated
 - solvents can permeate the seal and cause internal capacitor corrosion and failure.
 - For solvent resistant capacitors, carefully follow the temperature and time requirements based on the specification.
- 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.
- Alkaline solvents : could react and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents that may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the Upper category temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use in terms of electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor.

Please consult us if you are not certain about acceptable cleaning solvents or cleaning methods.

Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit

Electrolytic Capacitor Engineering Draft	CE-E-AFJ-07
Application Guidelines	22
2.8 Mounting Adhesives and Coating Agents When using mounting adhesives or coating agents to control humidity, avoid using materials containing haloger Also, avoid the use of chloroprene based polymers. Harden on dry adhesive or coating agents well lest the solvent should be left.	nated solvents.
After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between and the circuit board.	the capacitor
 2.9 Fumigation In exporting electronic appliances with aluminum electrolytic capacitors, in some cases fumigation treatring such halogen compound as methyl bromide is conducted for wooden boxes. If such boxes are not dried well, the halogen left in the box is dispersed while transported and enters capacitors inside. This possibly causes electrical corrosion of the capacitors. Therefore, after performing fumigation and compare sure that no halogen is left. Don't perform fumigation treatment to the whole electronic appliances packed in a box. 	nent in the Irying
 Precautions for using capacitors 3.1 Environmental Conditions Capacitors should not be stored or used in the following environments. 	
 (1) Exposure to temperatures above the upper category or below the lower category temperature of the capaci (2) Direct contact with water, salt water, or oil. (3) High humidity conditions where water could condense on the capacitor. (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bromine, Bromine compound or ammonia. (5) Exposure to ozone, radiation, or ultraviolet rays. (6) Vibration and shock conditions exceeding specified requirements. 	tor.
 3.2 Electrical Precautions (1) Avoid touching the terminals of a capacitor as a possible electric shock could result. The exposed aluminu is not insulated and could also cause electric shock if touched. (2) Avoid short circuiting the area between the capacitor terminals with conductive materials including liquids so as acids or alkaline solutions. 	m case uch
 4. Emergency Procedures (1) If the pressure relief of the capacitor operates, immediately turn off the equipment and disconnect from the This will minimize an additional damage caused by the vaporizing electrolyte. (2) Avoid contact with the escaping electrolyte gas, which can exceed 100 °C temperatures. If electrolyte or gas enters the eye, immediately flush the eye with large amounts of water. If electrolyte or gas is ingested by mouth, gargle with water. If electrolyte contacts the skin, wash with soap and water. 	power source.
5. Long Term Storage Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a f and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This surge current could cause the circuit or the capacitor to fail. After one year, a capacitor should be recor rated voltage in series with a 1000 Ω current limiting resistor for a time period of 30 minutes.	unction of temperature nditioned by applying the
 5.1 Environmental Conditions Exposure to temperatures above the upper category or below the lower category temperature of the capaci Direct contact with water, salt water, or oil. High humidity conditions where water could condense on the capacitor. Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bromine, Bromine compound or ammonia. Exposure to ozone, radiation, or ultraviolet rays. Vibration and shock conditions exceeding specified requirements. 	tor.
6. Capacitor Disposal When disposing capacitors, use one of the following methods.	
 (1) Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal press Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorin the polyvinyl chloride sleeve, etc. (2) Dispose as solid waste. 	sure rise). e from
NOTE : Local laws may have specific disposal requirements which must be followed.	
Matsushita Electronic Components Co.,Ltd. LCR Device Company Capacitor Business Unit	
Design, Specifications are subject to change without notice. Contact your nearest Panasonic sales office for the latest specifications prior to purchase a about safety comes up with this product, please contact us immediately for engineering assistance without fail. Specifications are typical and may no	nd/or use. Whenever any doubt t apply to all applications.